Skip to content

Different WiFi standards explained: WiFi 1 through the latest WiFi 6

WiFi is a wireless tech that allows various devices to connect with the internet without using internet chords. The devices can include computers, smartphones and tablets, or printers and video cams, among others. On May 17, 1999, six companies came together and formed the Wireless Ethernet Compatibility Alliance, which changed its name to WiFi Alliance in 2000. The alliance also introduced the term WiFi to the world for the first time. Since then, WiFi has come a long way, and 2019 saw the launching of WiFi 6 along with marking 20 years of WiFi.

WiFi works on the 802.11 IEEE network standard. In 1997, the Institute of Electrical and Electronics Engineers (IEEE) created the first base standard–802.11. Over the years, there were additions on the base standards, and in May 2018, the very latest 801.11aj standard was approved.

One important point to note is the relation between the frequency and range of the WiFi. Simply put, the higher the frequency, lower the range. Moreover, higher frequency allows the radio waves greater penetration power. Now let us understand some of the available Wifi standards.

Also read: What is the difference between 2.4 GHz and 5 GHz WiFi frequencies?


This standard is the foundation of WLAN standards. It supported a maximum network bandwidth of 2 Mbps, and thus was too slow for most applications.


Also known as China Millimeter Wave, this is a modification of the 802.11ad standard. The standard is developed to work on 45GHz bandwidth of China while retaining the 802.11 user experience along with maintaining backward compatibility with 802.11ad standard. The standard was approved in May 2018.


Also known as Wifi Halow, it operates on frequencies below 900 MHz, which makes it the first standard to do so. 802.11aj has nearly twice the range of previous WiFi techs, thus makes it suitable for the Internet of Things. Being in the 900 MHz frequency, it can penetrate walls and other barriers more efficiently, therefore ideal for challenging environments.


It will operate in 60 GHz bandwidth and offers much higher data transfer rate, theoretically which is 7 Gbps. However, to access the WiFi, the user should be inside the 11 feet radius of the WiFi hotspot.

Also read: How to block a device from using your WiFi?

802.11ax (WiFi 6)

What is WiFi 6 (802.11ax): Everything you need to knowWiFi 6 is the latest up-gradation over the original 802.11 standards. This standard, which is scheduled to launch in 2019, promises to deliver high data rates along with better network capacity, optimum power efficiency and ability to perform in congested environments.

The devices will operate in the 2.4 GHz and 5 GHz frequency bandwidth. This standard uses Orthogonal Frequency Division Multiple Access (OFDMA) technology, which will allow multiple users to operate on the same channel. Alongwith that, this standard will use Multi-User Multiple Input, Multiple Output (MU-MIMO) for more data transfer. Moreover, transmit beamforming technology will improve the signal power to a great extent.

Target Wake Time (TWT) will make the devices using this standard more power-efficient. Further, the 1024 quadrature amplitude modulation mode (1024-QAM) allows 25% more throughput than the previous standard. With all the modern additions, Wifi 6 promises to make the user experience more immersive.

Also read: 5 reasons why you should avoid using Public WiFi

802.11ac (WiFi 5)

The theoretical data transfer speed is 3 Gbps (with the support of 8 streams). This means that it can transfer 433 Mbps per spatial stream and 1.3 Gbps with a more common 3-stream design. It offers backward compatibility to 802.11b/g/n standards. It works exclusively on 5 GHz frequency band and utilises MU-MIMO technology. MU-MIMO can direct the spatial streams (antennae) to multiple clients, thus increasing the total data throughput in the network.

802.11n (Wireless N or WiFi 4)

Maximum data transfer rate is 300 Mbps (theoretically) but can extend up to 450 Mbps with three antennae. This standard uses MIMO (Multiple Input Multiple Output), where the information is sent and received via multiple streams. This standard was ratified in 2009 and is backwards-compatible with the previous standards–802.11/b/g.

802.11g (Wifi 3) 

Launched in 2002, this standard is a combination of the best features of standards 802.11a and 802.11b. It uses OFDM technology, just like standard 802.11a while working on 2.4 GHz, like standard 802.11b. The maximum theoretical rate is 54 Mbps and is backwards-compatible with 802.11b.

802.11a (Wifi 2)

The ‘a’ and ‘b’ additions to the original 802.11 standards were introduced around the same time. The 802.11a standard used a sophisticated technique known as Orthogonal Frequency Division Multiplexing (OFDM). The data transfer rate of this standard was 54 Mbps in 5 GHz frequency band. Working in 5 GHz band means there are fewer interferences and more stability, and for this reason, businesses used this standard.

802.11b (Wifi 1)

It was released in July 1999 and is the first modification of the base standard. It works on 2.4 GHz frequency band and supports a theoretical data transfer rate of 11 Mbps and uses DSSS technology for data transfer. Since this standard works on 2.4 GHz, it can incur interferences from other applications using the same bandwidth such as microwave ovens and cordless phones, among others.

For other 802.11 standards, click here.

Also read: Is your WiFi secure? 5 tips to keep your network safe and sound

Standard Bandwidth Data Transfer Rate Modulation Techniques Launched In
WiFi 6 (802.11ax) 2,4 GHz- 5 GHz 10 Gbps MU-MIMO 2019
WiFi 5 (802.11ac) 5 GHz 433 Mbps to 1,3 Gbps MU-MIMO 2014
Wifi 4 (802.11n) 2,4 GHz and 5 GHz 300 Mbps to 450 Mbps MIMO 2009
Wifi 3 (802.11g) 2.4 Ghz 54 Mbps OFDM 2003
Wifi 2 (802.11a) 5 GHz 54 Mbps OFDM 1999
Wifi 1 (802.11b) 2.4 GHz 11 mbps HR-DSSS 1999

Hello there

If you like what you read, please support our publication by sharing it with your friends, family and colleagues. If you’re running an Adblocker, we humbly request you to whitelist us.